Exercise 1.10
In the 10th exercise, we look at Ackerman’s function and give concise mathematical definitions for functions which involve it.
The Question
Exercise 1.10: The following procedure computes a mathematical function called Ackermann’s function.
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
What are the values of the following expressions?
(A 1 10)
(A 2 4)
(A 3 3)
Consider the following procedures, where A
is the procedure defined above:
(define (f n) (A 0 n))
(define (g n) (A 1 n))
(define (h n) (A 2 n))
(define (k n) (* 5 n n))
Give concise mathematical definitions for the functions computed
by the procedures f
, g
, and h
for positive integer values of n. For
example, (k n)
computes $ 5n^{2} $ .
My Thoughts
To answer this question, we are going to calculate this manually. This so that we get a better understanding to what happens in the Ackerman’s function. However you can copy-paste the given code to Check if our answer is right.
The Answer
Let us use the Substitution model in the expression (A 1 10)
:
(A 1 10)
(A 0 (A 1 9))
(A 0 (A 0 (A 1 8)))
(A 0 (A 0 (A 0 (A 1 7))))
(A 0 (A 0 (A 0 (A 0 (A 1 6)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))
....
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2))))))))))
....
1024
Let us do the same for (A 2 4)
(A 2 4)
(A 1 (A 2 3))
(A 1 (A 1 (A 2 2)))
(A 1 (A 1 (A 1 (A 2 1))))
(A 1 (A 1 (A 1 2)))
(A 1 (A 1 (A 0 (A 1 1))))
(A 1 (A 1 (A 0 2)))
(A 1 (A 1 4))
(A 1 (A 0 (A 1 3)))
(A 1 (A 0 (A 0 (A 1 2))))
(A 1 (A 0 (A 0 (A 0 (A 1 1)))))
(A 1 (A 0 (A 0 (A 0 2))))
(A 1 (A 0 (A 0 4)))
(A 1 (A 0 8))
(A 1 16)
(A 0 (A 1 15))
(A 0 (A 0 (A 1 14)))
(A 0 (A 0 (A 0 (A 1 13))))
(A 0 (A 0 (A 0 (A 0 (A 1 12)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024))))))
(A 0 (A 0 (A 0 (A 0 (A 0 2048)))))
(A 0 (A 0 (A 0 (A 0 4096))))
(A 0 (A 0 (A 0 8192)))
(A 0 (A 0 16384))
(A 0 32768)
65536
I presume that the (A 3 3)
would be rather long to express
in the substitution model, let’s just find the answers using
the scheme shell.
1 ]=> (A 3 3)
;Value: 65536
The Mathematical Definitions
Now getting to the 2nd part of the question:
(f n)
(define (f n) (A 0 n))
If you look at the cond
test in the Ackerman’s Function, you will
see ((= x 0) (* 2 y))
. Here in (A 0 n)
, x = 0
so $ 2 \times n $.
We can conclude that (f n)
will return $ 2n $.
$$ (f n) \rightarrow 2n $$
(g n)
(define (g n) (A 1 n))
When we were computing (A 1 10)
, we saw that (A 1 10)
became (A 0 (A 1 9))
, which became (A 0 (A 0 (A 1 8)))
.
This nesting continued until n
became 1, which was when
2 was returned. If look more carefully, you will notice
that the nesting continued till n
was reduced to 1
which was 9 times and two returned to the last level.
We can then say that 2 was multiplied 10 times.
$ 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 10 $
Thus we see that (g n)
is 2 multiplied n
times.
This can be then be further simplified to say that
(g n)
returns $ 2^{n} $ . However if n = 0, 0 is returned.
$$ (g 0) \rightarrow 0, (g n) \rightarrow 2^{n}$$
(h n)
(define (h n) (A 2 n))
When we were computing (A 2 4)
we saw that it became
(A 1 (A 2 3))
which eventually became (A 1 (A 1 (A (A 2 1))))
In this case, (A 1) is nested $ n -1 $ times, with two being
returned to the innermost level. This leads to the exponent
being raised to the power of the exponent above it.
This is called Tetration.
$ 2^{2^{2^{2}}} $
The definition:
$$ 2 \uparrow \uparrow n $$
$$ (h 0) \rightarrow 0, (h n) \rightarrow 2 \uparrow \uparrow n$$